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Abstract: We derive the formula of the black hole entropy with a minimal length of the

Planck size by counting quantum modes of scalar fields in the vicinity of the black hole

horizon, taking into account the generalized uncertainty principle (GUP). This formula

is applied to some intriguing examples of black holes - the Schwarzschild black hole, the

Reissner-Nordstrom black hole, and the magnetically charged dilatonic black hole. As a

result, it is shown that the GUP parameter can be determined by imposing the black hole

entropy-area relationship, which has a Planck length scale and a universal form within the

near-horizon expansion.
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1. Introduction

There has been much interest in the end state of a small black hole after Hawking evap-

oration. In the context of thermodynamics based on the Bekenstein entropy [1] and the

Hawking temperature [2], the black hole emits a radiation and it becomes smaller and hot-

ter, which disappears when the evaporation ends. Then, the black hole will evaporate com-

pletely, leaving behind thermal radiation described by quantum-mechanical mixed states.

Therefore, the information will be completely lost and the unitarity postulate of quantum

theory may be broken, which is well-known as the black hole information loss paradox. Even

though the black hole is charged with an electric and/or magnetic field, the situation is sim-

ilar to the uncharged case. There exists a lower bound of the black hole mass called the ex-

tremal limit where the mass and the charge are in balance. As the small black hole radiates,

it looses its mass and finally approaches the limit at which the black hole radiates no more.

However, this scenario is mainly based on the semi-classical analysis [3], assuming the

classical background metric and disregarding the radiating energy compared to the rest

energy of the black hole. Provided the black hole reaches the Planck size as it radiates, the

emitted radiation energy is not any more negligible compared to the size of the black hole.

Thus, when the size of the black hole is comparable to the Compton wavelength of the emit-

ted radiation, the quantum fluctuation near the black hole affects the position of the black

hole horizon, which leads to the breakdown of the semi-classical assumptions. Hence, we

should include the back-reaction effect for the full analysis, which means that the complete

quantum gravity is required in order to give a definite answer on the fate of the black hole.

Recently, it has been proposed that there might be a minimal length with the Planck

scale, modifying usual commutation relations of the Heisenberg’s uncertainty principle
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to the generalized uncertainty principle (GUP). The tensorial forms of the commutation

relation [4 – 8] are

[xi, pj ] = i~
(

1 + λp2
)

δij , (1.1)

[xi, xj ] = 2i~λ(pixj − pjxi), [pi, pj ] = 0, (1.2)

which leads to the minimal length uncertainty,

∆x∆p ≥ ~ +
λ

~
(∆p)2. (1.3)

It has been shown that the commutation relation implying the minimal length is not

uniquely determined [4]. Indeed, its conceptual origin comes from the string theory [5],

which resembles noncommutative geometry [6, 7]. In the context of string theory, the GUP

provides the improved uncertainty relation (1.3) and the GUP parameter λ is determined

as the fundamental constant associated with the string tension, λ ≃ α′ ∼ (10−32cm)2,

implying the existence of the minimal length with a Planck scale, ∆x ≥ 2
√

α′ ∼ 10−32cm.

From these reasons, the GUP has drawn much attention in diverse aspects - the modifi-

cation of dispersion relations [7 – 9], the black hole entropy without brick walls [10 – 16], the

black hole remnants (BHR) as a possible resolution of the information loss paradox [17],

and the primordial black hole remnants as a candidate of the cold dark matter (CDM) [18].

On the other hand, it has been shown that the GUP relation (1.3) can be derived from

the model-independent ways from the quantum theory of gravitation [19], where the GUP

parameter has not been specified. However, it can be determined through certain specific

models and measurements such as a string theory or the full theory of quantum gravity.

One may think the GUP parameter should be determined by some physical laws or

principles because the relation is derived from the basic assumptions of quantum theory

of gravitation. Motivated by this, we would like to compute the entropy of scalar fields in

the black hole background in the presence of the minimal length, and we show that the

black hole entropy-area relationship can fix the scale of the minimal length of the GUP in

ref. [19]. More precisely, the generic metric ansatz with the spherical symmetry is taken

into account and the entropy can be written in the form of the polynomial of the minimal

length parameter in the near-horizon limit. As a result, the most dominant term describes

the entropy that is proportional to the area of the event horizon while the subleading terms

are quite negligible in the regime of the large black hole. The GUP parameter determined

by the area law is universal up to the second order expansion of the near-horizon limit in

some specific models, which is the order of the Planck scale.

In section 2, we shall derive the generic formula of the entropy of scalar fields in

the background of the spherical symmetric black hole metric assuming semi-classical ap-

proximations and keeping the second order expansion of the near-horizon parameter. In

section 3, the charged dilatonic black hole solutions with an arbitrary coupling between

the dilaton and the U(1) gauge field strength are taken into account. For specific values of

the coupling, the solution describes the Schwarzschild (SS), the Reissner-Nordstrom (RN),

and the magnetically charged dilatonic black holes. In section 4, for these specific cases

of the coupling, we show that the black hole entropy-area relationship can determine the

GUP parameter as a Planck scale. Finally, some discussions are included in section 5.
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2. Derivation of entropy with the minimal length

Let us consider the Klein-Gordon equation for a massive scalar field in the background of

the black hole (¤−µ2)Φ = 0, where ¤ = ∇µ∇µ and µ is the mass of the scalar field. Using

an ansatz Φ = Ψ(r, θ, ϕ)e−iωt, then the field equation becomes

Ψ′′ +

(

f ′

f
+ 2

R′

R

)

Ψ′ +
1

f

[

ω2

f
− µ2 +

1

R2
(∂2

θ + cot θ∂θ + csc2 θ∂2
ϕ)

]

Ψ = 0, (2.1)

where the prime denotes d/dr, and f and R2 are the metric functions of the spherically

symmetric metric,

(ds)2 = −f(r)dt2 +
dr2

f(r)
+ R2(r)

(

dθ2 + sin2 θdϕ2
)

. (2.2)

Assuming the Wenzel-Kramers-Brillouin (WKB) approximation [20] with Ψ ≃
eiS(r,θ,ϕ), it is found to be p2

r = 1
f

[

ω2

f − µ2 − p2
θ

R2 − p2
ϕ

R2 sin2 θ

]

, where pr = ∂S/∂r,

pθ = ∂S/∂θ, and pϕ = ∂S/∂ϕ. We have the squared module of momentum given by

p2 = grrp2
r + gθθp2

θ + gϕϕp2
ϕ = ω2/f − µ2 and the volume in the momentum phase space is

V (r, θ) =

∫

dprdpθdpϕ =
4

3
π

R2(r)√
f

sin θ

(

ω2

f
− µ2

)3/2

(2.3)

with ω ≥ µ
√

f . The number of quantum states are given by the weighted phase space

volume measure [8],

n(ω) =
1

(2π)3

∫

drdθdϕdprdpθdpϕ
1

(1 + λp2)3

=
1

(2π)3

∫

drdθdϕ
V (r, θ)

(1 + λp2)3

=
2

3π

∫

dr
R2(r)

(

ω2

f − µ2
)3/2

√
f

[

1 + λ
(

ω2

f − µ2
)3

] . (2.4)

One might think that arbitrary integration measures can be chosen without deforming the

commutation relations eqs. (1.1) and (1.2). Specifically, the measure in eq. (2.4) may be

absorbed in a suitable rescaling of the fields and in a suitable redefinition of the opera-

tors that act on the fields. However, this is not the case since this measure is nontrivial

in that the measure of the phase space corresponding to the number of density of states

should be consistently derived as long as we follow the Liouville theorem as indicated in

ref. [8], where this weighted volume element should be invariant under the infinitesimal

time translations. Actually, the time evolution is subjected to the GUP through modified

Hamiltonian equations of motion. Of course, taking λ = 0, then the original density of

states is naturally recovered. The improved measure seems to be plausible in the sense that

the minimal length plays a role of the ultraviolet cut-off which is naturally introduced in
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the denominator in eq. (2.4). On the other hand, the construction of the Hilbert space rep-

resentation with the GUP has been already done in ref. [7], although it is no longer unique.

Indeed, the representation describing the minimal length uncertainty is for the momentum

space. Taking into account it in a position space, the position eigenstates are in general no

longer orthogonal unlike the momentum eigenstates. Of course, there might be diagonal-

izable but have no physical eigenstates since they are described on lattices in the position

space. In this sense it looks difficult to construct the representation in the position space

rather than that in the momentum space. However, for given commutation relations, the

weighted volume factor of the phase space is uniquely determined and is independent of the

choice of representation. From these reasons, the invariant phase space volume gives some

corrections to the physical quantities through the minimal length uncertainty principle.

Now, taking into account a thin-layer around the event horizon of the black hole

between r+ and r+ + ǫ, where ǫ is an infinitesimal distance from the horizon, then the

metric functions around this layer are expanded as

f(r) ≃ κ(r − r+) + f2(r − r+)2, R2(r) ≃ r0 + r1(r − r+) + r2(r − r+)2, (2.5)

where κ is a surface gravity with κ = f ′(r+) and the other coefficients are f2 =

f ′′(r+)/2, r0 = R2(r+), r1 = [R2(r+)]′, and r2 = [R2(r+)]′′/2 by keeping the second

order of the expansion. Now we want to identify the proper length between the layer with

the GUP minimal length. Then the GUP parameter associated with the minimal length

xmin = 2
√

λ is determined by

2
√

λ =

∫ x++ǫ

x+

dx̂
√

f(x̂)
≃

√
ǫ√
κ

(

2 − f2ǫ

3κ

)

, (2.6)

which can be expressed in the alternate form of ǫ ≃ κλ + O(λ2). From the free energy

defined by

F = −
∫ ∞

0
dω

n(ω)

eβω − 1
, (2.7)

where β is the inverse Hawking temperature, the entropy, SBH = β2∂F/∂β, is straightfor-

wardly calculated as

SBH =
β3

12πλ3

∫ ∞

0
dx

x4

sinh2 x

∫ r++ǫ

r+

dr
R2(r)f

(x2 + Bf)3

≡ β3

12πλ3

∫ ∞

0
dx

x4

sinh2 x
I(x), (2.8)

where B = β2/4λ and x ≡ βω/2 by setting µ = 0 (massless scalar field) for simplicity.

Since we have R2f = r0κ(r−r+)+(r1κ+r0f2)(r−r+)2+(r2κ+r1f2)(r−r+)3+O(r−r+)4,

the radial integration, I(x) in eq. (2.8) is expressed by three parts near the horizon and

expanded in terms of ǫ by keeping the ǫ4-order terms,

I(x) =

∫ ǫ

0
dǫ̂

r0κǫ̂ + (r1κ + r0f2)ǫ̂
2 + (r2κ + r1f2)ǫ̂

3

(x2 + Bκǫ̂ + Bf2ǫ̂2)3
≃ a

x6
− b

x8
+

c

x10
, (2.9)
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where

a =
1

2
r0κǫ2 +

1

3
(r1κ + r0f2)ǫ

3 +
1

4
(r2κ + r1f2)ǫ

4, (2.10)

b =
β2κǫ3

16λ
[4r0κ + 3(2r0f2 + r1κ)ǫ] , c =

3r0κ
3β4ǫ4

32λ2
. (2.11)

Therefore, the black hole entropy becomes

SBH =
β3

12πλ3

[

a

∫ ∞

0

dx

x2 sinh2 x
− b

∫ ∞

0

dx

x4 sinh2 x
+ c

∫ ∞

0

dx

x6 sinh2 x

]

. (2.12)

Since the integrations with respect to x can be regarded as a contour integration on a

complex plane, we use the residue theorem and find

∫ ∞

0

dx

x2 sinh2 x
=

2

π2
ζ(3),

∫ ∞

0

dx

x4 sinh2 x
= − 4

π4
ζ(5),

∫ ∞

0

dx

x6 sinh2 x
=

6

π6
ζ(7), (2.13)

where ζ(n) is a zeta function. Plugging these into eq. (2.12), then the black hole entropy is

SBH =
β3

12π3λ3

[

2aζ(3) +
4b

π2
ζ(5) +

6c

π4
ζ(7)

]

, (2.14)

which is the general formula of the entropy. Since the precise form of the black hole

entropy depends on the specific metric, we shall apply this to some concrete black hole

models in the following section.

3. Dilatonic charged black holes with an arbitrary coupling

Now let us consider a four-dimensional low-energy dilaton gravity action with an arbitrary

coupling from string theory given by [21]

I =
1

16πGN

∫

d4x
√
−g

[

R− 2(∇φ)2 − e−2αφF 2
]

, (3.1)

where GN is a Newton’s constant, φ is a dilaton field, F is a Maxwell field strength of a

U(1) subgroup of E8 × E8 or Spin(32)/Z2, and α is a coupling constant between dilaton

and the Maxwell field strength. The charged dilatonic black hole solution with a spherical

symmetry is given in the form of

f(r) =
(

1 − r+

r

)(

1 − r−
r

)
1−α2

1+α2

, R2(r) = r2
(

1 − r−
r

)
2α2

1+α2

, (3.2)

e−2αφ =
(

1 − r−
r

)
2α2

1+α2

, F = Q sin θdθ ∧ dϕ (3.3)

where r+ and r− are related to the mass M and the magnetic charge Q of black holes as

2M = r+ + 1−α2

1+α2 r−, Q2 = r+r
−

1+α2 , respectively. It is easy to verify that the action (3.1)

has an electro-magnetic dual symmetry under φ → −φ along with the fixed metric by

defining the electric field strength as F̃µν = 1
2e−2αφǫ ρσ

µν Fρσ . The solution for α = 0

describes the Ressiner-Nordstrom (RN) black hole while the one for α = 1 corresponds
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to the magnetically charged black hole [22]. Moreover, the case of α = 0 and r− = 0

describes the Schwarzschild black hole. Note that the extremal limit r+ = r− leads to

M2 = Q2/(1 + α2). The Hawking temperature for non-extremal black holes is given by

TH = β−1 = 1
2πr+

(

r+−r
−

r+

)
1−α2

1+α2

, which implies that it always vanishes for the extremal

limit unless α = 1.

4. Universal minimal length scale from the entropy-area relationship

4.1 Schwarzschild (SS) and Reissner-Nordstrom (RN) black holes

For the SS black hole (α = 0 and r− = 0), the coefficients of the series expansion in eq. (2.5)

can be identified with κ = 1/r+, f2 = −1/r2
+, r0 = r2

+, r1 = 2r+, and r2 = 1 and then

eqs. (2.10) and (2.11) become

a =
r+ǫ2

2
+

ǫ3

3
− ǫ4

4r+
, b =

β2κǫ3r+

4λ
, c =

3β4ǫ4

32λ2r+
. (4.1)

Plugging these into eq. (2.14), one finds the black hole entropy in the polynomial form with

respect to λ as

SSS
BH =

AH

4GN
+

4

9
ζ(3) + O(λ), (4.2)

where AH is the area of S2-sphere at the event horizon, AH = 4πr2
+, and the GUP param-

eter is determined to λ = 2GN (ζ(3) + 4ζ(5) + 9ζ(7))/3π. Note that the GUP parameter

depends on the Newton’s constant of the Planck length scale since λ ∼ 3.061061275 ×GN .

The leading order describes the area law of the black hole entropy with the 1/λ-order con-

tribution while the next leading term is the λ0-th and higher order terms. However, in the

large black hole limit we considered (r+ ≫ 1), the subleading terms are quite negligible

compared to the area term.

On the other hand, for the RN black hole, the coefficients for the expansion of the

metric functions can be given by to κ = (r+ − r−)/r+, f2 = −(r+ − 2r−)/r3
+, r0 = r2

+,

r1 = 2r+, and r2 = 1 and one can easily find

a =
(r+ − r−)ǫ2

2
+

ǫ3

3
− (r+ − 3r−)ǫ4

4r2
+

,

b =
β3κǫ3

8λ

(

2(r+ − r−) +
3r−ǫ

r+

)

, c =
3β4ǫ4(r+ − r−)3

32λ2r4
+

. (4.3)

Therefore, one can show the entropy of the RN black hole up to the zeroth order of λ,

SRN
BH =

AH

4GN
+

4

9
ζ(3) +

4r−
r+

ζ(5) + O(λ), (4.4)

where the same GUP parameter λ as the case of the SS black hole was chosen. The first

term represents the area law of the black hole entropy, which agrees with the result in

ref. [15] while the higher order corrections are negligible for the large black hole case.

– 6 –



J
H
E
P
0
1
(
2
0
0
8
)
0
3
4

4.2 Magnetically charged dilatonic black hole

The magnetically charged dilatonic black hole solution is obtained when α = 1, which

yields f(r) = 1 − r+/r and R2(r) = r(r − r−). For this metric solution, the coefficients of

the series expansion near the horizon are easily obtained as κ = 1/r+, f2 = −1/r+, r0 =

r+(r+ − r−), r1 = 2r+ − r−, r2 = 1, and the coefficients (2.10) and (2.11) are found to be

a =
(r+ − r−)ǫ2

2
+

ǫ3

3
− (r+ − r−)ǫ4

4r2
+

,

b =
β2ǫ3

16λr+

(

4(r+ − r−) +
3r−ǫ

r+

)

, c =
3β4ǫ4(r+ − r−)

32λ2r2
+

. (4.5)

Hence, the entropy of the charged dilatonic black hole is found by keeping the λ0-th order,

Sα=1
BH =

AH

4GN
+

4

9
ζ(3) +

2r−
r+

ζ(7) + O(λ), (4.6)

where AH = 4πr+(r+ − r−) and λ = 2GN (ζ(3) + 4ζ(5) + 9ζ(7))/3π. Note that the first

leading term represents the area of S2-sphere at the horizon while the next subleading term

is also negligible for the limit of r+ ≫ 1. Therefore, the GUP parameter of the Planck

scale has an universal form, as seen in the previous two cases up to the second order for

the near-horizon expansion.

5. Discussion

We have derived the generic formula of the entropy of black holes by integrating quantum

modes of scalar fields, taking into account the modified dispersion relation from the GUP

and including the next subleading terms of the near-horizon expansion. This is a general

result in that it is independent of the metric solutions as long as we assume the spherical

symmetry. Since we identified the ultra-violet cut-off ǫ with the GUP parameter λ, one can

expand the metric function with respect to this GUP parameter and the expansion is also

valid with respect to the minimal length of the Planck scale. The generic formula have been

applied to the Schwarzschild black hole, the RN black hole, and the magnetically charged

dilatonic black hole. The leading term of the entropies in three cases is the λ−1-order,

which clearly describes the area law of the black hole, whereas the subleading terms are

negligible compared to the leading term since we have used the semi-classical assumptions

that is valid only for the large black hole case. Especially, the constant contribution to the

entropy can be removed by an appropriate normalization.

A short glance of three exemplified results reveals that the scale of the GUP parameter

can be determined by the entropy-area relationship, which has the Planck length scale.

Thus the unpredictable GUP parameter in ref. [19] can be fixed by the black hole entropy-

area relationship, which is universal up to the second order expansion of the near-horizon

limit. Therefore, we conclude that the physical scale of the GUP parameter derived from

the quantum theory of gravitation in ref. [19] can be predicted by the black hole entropy-

area relationship as λ = 2
3π (ζ(3) + 4ζ(5) + 9ζ(7))GN ∼ GN , which has a Planckian scale of

the minimal length, ∆x = 2
√

λ ∼ 10−33 cm.
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The minimal length uncertainty has been naturally derived from various contexts such

as the string theory and the quantum gravity, which advocate the fundamental features of

the UV/IR correspondence. One may expect that there is no invariance under the Lorentz

transformation at the Planck scale where the minimal length uncertainty is dominant.

In fact, the Lorentz symmetry breaking at the string scale or the Planck scale has been

suggested in ref. [23]. Furthermore, a similar possibility appears in the formalism of the κ-

deformed Poincare group [24] since this quantum deformation closely related to the GUP

also breaks the Lorentz invariance [25]. The minimal length is of great interest since it

exhibits some intriguing feature of the UV/IR relation in a variety of contexts such as

the AdS/CFT correspondence [26], noncommutative field theories [27], quantum gravity

in asymptotically de Sitter space [28], and so on. In spite of these nice non-relativistic

arguments, it should be possible to obtain the Lorentz covariant formulation of the GUP,

which is unfortunately not successful up to now. For instance, the GUP commutation

relations (1.1) and (1.2) are not fully tensorial forms, which clearly breaks the Lorentz

covariance. So, one may try to single out a preferred frame from a Lorentz covariant

formulation. For this purpose, let us simply write the GUP relations in a Lorentz covariant

fashion, [xµ, pν ] = i~(1 + λpαpα)ηµν , [xµ, xν ] = 2i~λ(pµxν − xµpν), [pµ, pν ] = 0. Then,

the usual GUP commutation relations are recovered by dropping term (p0)2 from pαpα.

However, this procedure is not equivalent to the non-relativistic limit [29] although the

commutative limit can be well-defined for λ = 0. It implies that the above Lorentz covariant

formulation fails so that the preferred frame giving the minimal length cannot be found

from this naive formulation. Historically, as the relativistic quantum mechanics from the

old quantum mechanics is not straightforward, it seems that it is not easy to achieve

the relativistic formulation of the GUP which is the nontrivial extension of the quantum

mechanics. We hope that this intriguing and important problem will be studied elsewhere.
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theory, Phys. Lett. B 293 (1992) 344.

[25] M. Maggiore, Quantum groups, gravity and the generalized uncertainty principle, Phys. Rev.

D 49 (1994) 5182 [hep-th/9305163].

[26] L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114;

A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999)

065011 [hep-th/9809022].

[27] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001)

977 [hep-th/0106048].

– 10 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB645%2C393
http://arxiv.org/abs/gr-qc/0609031
http://arxiv.org/abs/hep-th/9209058
http://arxiv.org/abs/hep-th/9209055
http://arxiv.org/abs/hep-th/9209113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB382%2C123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB382%2C123
http://arxiv.org/abs/hep-th/9203054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C3607
http://arxiv.org/abs/hep-th/9201061
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C1347
http://arxiv.org/abs/hep-th/9203059
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C4476
http://arxiv.org/abs/hep-th/9211030
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C1912
http://arxiv.org/abs/gr-qc/9307035
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C33%2C2101
http://arxiv.org/abs/gr-qc/0106080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C645
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C645
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C4853
http://arxiv.org/abs/astro-ph/9405027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C307%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C124%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C124%2C103
http://arxiv.org/abs/gr-qc/0205106
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB304%2C65
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB304%2C65
http://arxiv.org/abs/hep-th/9301067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB256%2C727
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD43%2C3140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD43%2C3140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C73%2C2521
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C73%2C2521
http://arxiv.org/abs/hep-th/9406210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C6606
http://arxiv.org/abs/hep-th/9308139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB293%2C344
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C5182
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C5182
http://arxiv.org/abs/hep-th/9305163
http://arxiv.org/abs/hep-th/9805114
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C065011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C065011
http://arxiv.org/abs/hep-th/9809022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C73%2C977
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C73%2C977
http://arxiv.org/abs/hep-th/0106048


J
H
E
P
0
1
(
2
0
0
8
)
0
3
4

[28] C.M. Hull, Duality and the signature of space-time, JHEP 11 (1998) 017 [hep-th/9807127];
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